WSN	Context
0000	

Energy Modeling

Energy Optimization

Software Radio WSN

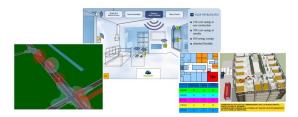
Conclusions

Energy Efficiency of Wireless Sensor Networks

O. BERDER, M. GAUTIER, O. SENTIEYS, A. CARER

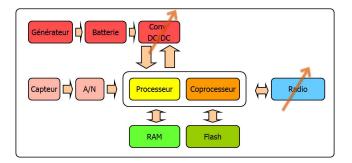
ENSSAT, Université de Rennes1 INRIA/IRISA EPC CAIRN

March 20, 2014



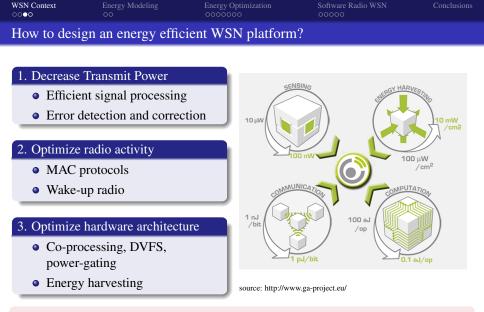
Microwave & RF, Olivier Berder, 20/03/14

1/23


WSN Context ●○○○	Energy Modeling	Energy Optimization	Software Radio WSN 00000	Conclusions
Wireless Ser	nsor Networks			

- Wide range of Wireless Sensor Network (WSN) applications
 - Health, buildings and agriculture monitoring, defense, etc
 - 2B€ per year market until 2022
- Set of smart radio nodes generating and relaying messages
- Ad Hoc, fault tolerant networks
- Low cost, low traffic and low power

WSN Context ○●○○	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusions
Which parts	of a WSN node a	are energy consumi	ng?	


A WSN node is a typical embedded system

Microwave & RF, Olivier Berder, 20/03/14

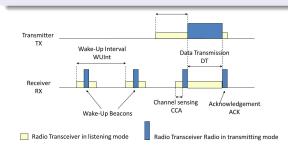
Goal of future WSNs: reach energy autonomy!

WSN Context ○○○●	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusions
Outlines				

Energy Modeling

- PowWow Platform
- Hybrid energy model
- Energy Optimization
 - Adaptive PHY and MAC layers
 - Cooperative techniques
 - Towards completely autonomous nodes
- 4 Software Radio Wireless Sensor Nodes
 - Fit-Cortex lab
 - Experimentation Room
 - FPGA software defined radio

Conclusions

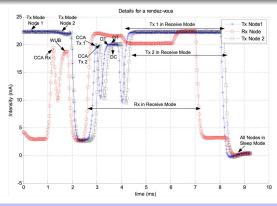

WSN Context 0000	Energy Modeling ●○	Energy Optimization	Software Radio WSN 00000	Conclusions
CAIRN Tear	n WSN Platform	a : PowWow		

Hardware components

- TI MSP430 Microprocessor
- TI CC2420 Radio transceiver

- Actel Igloo FPGA coprocessor
- Energy harvesting board

Asynchronous MAC protocol: well suited to low traffic applications



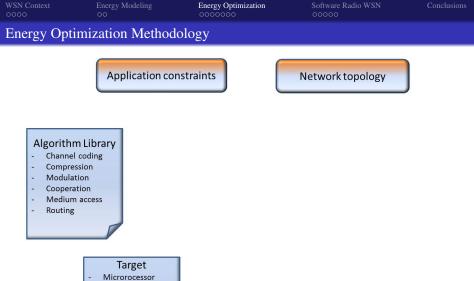
Microwave & RF, Olivier Berder, 20/03/14

WSN Context 0000	Energy Modeling ○●	Energy Optimization	Software Radio WSN 00000	Conclusions
Hybrid energy	v model			

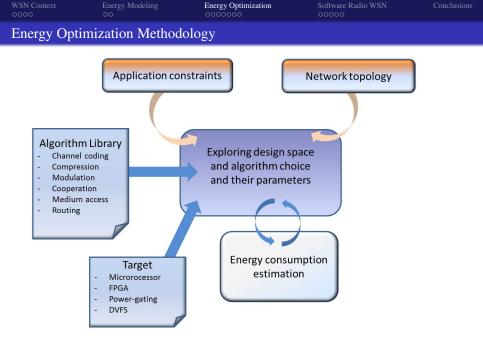
Scenario-based hybrid model [M. Cartron and M.M. Alam PhDs]

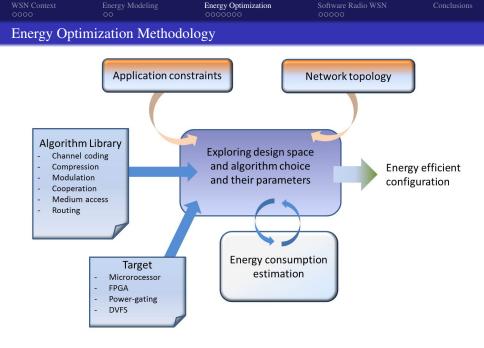
- Real-Time measurements for scenarios
- Analytic expressions for traffic parameters
- Accurate energy consumption estimation [EURASIP_JES_11]

Microwave & RF, Olivier Berder, 20/03/14



- Channel coding
- Compression
- Modulation
- Cooperation
- Medium access
- Routing





- FPGA
- Power-gating
- DVFS

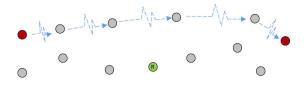
IRISA

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusions
Adaptive PH	Y and MAC laye	ers		

Transmit power optimization [M. Cartron PhD]

- Lifetime increase through static TX power tuning
- Different coding schemes investigated (implementation on low-power FPGA)
- Dynamic TX power adaptation

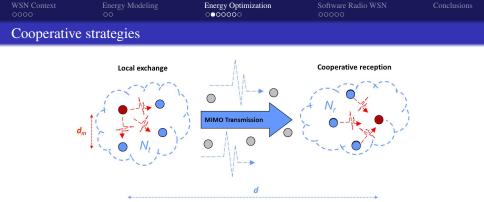
Wake-up interval optimization [M.M. Alam PhD]


- Static adaptation to application constraints [DASIP07]
- Traffic-Aware Dynamic MAC protocol [IEEE_JETCAS_12, IWCLD11, BSN11]
 - Definition of Traffic Status Registers
 - Self-adaptive algorithm
 - Significant reduction of idle listening

WSN Context	Energy Modeling	Energy Optimization	Software Radio WSN 00000	Conclusions
Cooperative	e strategies			

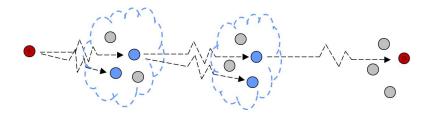
• Direct transmission: fast but energy consuming (when possible)

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusions
Cooperative	e strategies			



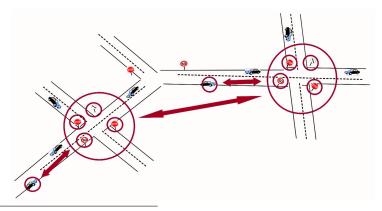
- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency

WSN Context	Energy Modeling	Energy Optimization	Software Radio WSN 00000	Conclusions
Cooperative	e strategies			


- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable

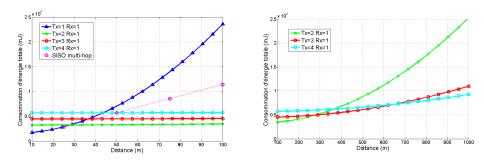
- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable
- Cooperative MIMO: efficient but synchronization requirement and complex reception

WSN Context	Energy Modeling	Energy Optimization	Software Radio WSN	Conclusions
0000	00	○●00000	00000	
Cooperative	e strategies			

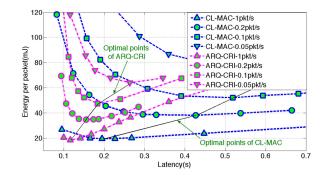

- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable
- Cooperative MIMO: efficient but synchronization requirement and complex reception
- Opportunistic relaying: reliable but variable latency

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusi
100 11				

ITS Application Context


IRISA

- Application constraints and network topology can drive cooperative scheme choice
- Infrastructure to Vehicle (I2V) Communications in CAPTIV¹
- Cooperative MIMO well suited to crossroads configuration


¹Cooperative strAtegies for low Power wireless Transmissions between Infrastructure and Vehicles

- Energy models (literature, transceiver characteristics)
- Cooperative MISO more energy efficient from 30 meters
- Cooperation at the receiver not really energy efficient

ARQ-CRI MAC protocol [D.L. Nguyen Ms Thesis, ICC13]

- Automatic Repeat Request Cooperative Receiver Initiated
- For low traffic, ARQ-CRI far more energy efficient
- For higher traffic, same energy but lower latency for ARQ-CRI
- For each optimal point, best energy-delay trade-off

WSN Context 0000	Energy Modeling	Energy Optimization	Software Radio WSN 00000	Conclusions
Implementat	ion of cooperativ	ve techniques		

This recent research domain lacks...

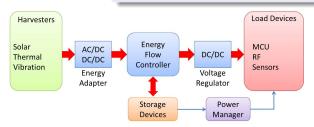
experimental platforms!

- Proof of concept with real conditions
- Validating implementation problems such as:
 - Synchronization needs (virtual MIMO for instance)
 - Channel state information transmission in MH networks
- Self-tuning to find experimentally best strategies

Equipex Future Internet of Things

• More than 50 software defined radio nodes (some MIMO compliant)

AMI ADEME EGUISE

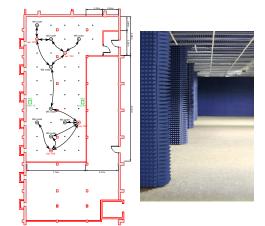

- Electric vehicles management
- Onboard multistandard radio nodes for communication

WSN Context	Energy Modeling	Energy Optimization	Software Radio WSN	Conclusions
0000	00	000000●	00000	
Towards a c	omplete autonom	v of wireless nodes		

Power manager design [GRECO, N.L. Trong PhD]

- Multi-source harvesting hardware
 - Light, Heat, Moves, RF, Bio ...
- Prediction algorithms
- Energy neutral operations
- Efficient implementation

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN ●0000	Conclusions		
Fit-Cortex la	b in a nutshell					
7 FIT Future Internet	(of Things)		equipex.fr exlab.fr			
Cortex lab - H	Experimental wire	less testbed				
- Isolated	- Isolated room					
- Worldwide web access						
- Phy-lay	er programming c	apabilities				
Applications:						
- Ad-hoc 1	network,					
- Primary-	secondary cogniti	ve radio networks	41 43	W		


- Dynamic spectrum access -
- Distributed MIMO _

... **WIRISA**

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN	Conclusions
Experimentati	on Room			

3 years of deployment - 7 years of exploitation - Total investment of $1M \in$

- $\sim 200~{\rm m}^2$ in experimentation room area
- Operating between 300 MHz 3 GHz (for SDR cards)
- 28 MHz of bandwidth
- $\sim 500 \text{ m}^2$ of electromagnetic isolation material
- $\sim 300~m^2$ of radio absorbers

 \Rightarrow Aprox. 80 nodes in two types (Software Defined Radio and Sensor)

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN ○○●○○	Conclusions
Node techn	ologies			

- Sensor network nodes (SensLAB):
 - 2.4 and 5 GHz ISM band
 - Power over ethernet
 - Possibility to deploy custom firmwares
- Flexible Software Defined Radio nodes:
 - CPU and FPGA radio block interchangeability
 - Wide-band RF (300 MHz 3 GHz)
 - Possibility to switch to home-made RF
 - MIMO and SISO availability

and...

- Remote accessibility
- Remote management
- Open source (no closed IPs or licenses)
- Total budget of about 300 k \in

 WSN Context
 Energy Modeling
 Energy Optimization
 Software Radio WSN
 Conclusions

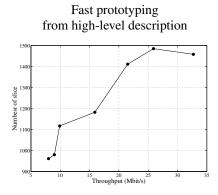
 000
 00
 000000
 00000
 00000
 00000

Challenge

Prototyping a remote implementation of wireless protocols/radio on a hardware FPGA platform.

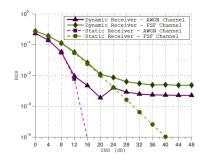
Design methodology: full FPGA software defined radio

Goal: FPGA design from high level specifications.


- low power and high operating frequency / processor-based SDR
- easy programming and rapid prototyping / direct FPGA design
- Design flow leveraging High Level Synthesis tools [VTC13]

Algorithm

Goal: reduce energy consumption of the node


- Low power OFDM receiver using variable bitwidth
- Spectrum agility in BAN [CROWNCOM14]

Design space exploration \Rightarrow area gain

Adapt accuracy based on channel and noise estimation

Up to 64% of energy saved

WSN Context 0000	Energy Modeling 00	Energy Optimization	Software Radio WSN 00000	Conclusions
Conclusions				

WSN Energy optimization

- Radio consumption is a real problem!
- Energy optimization is complex and cross-layer
- Adaptive and cooperative techniques are promising but difficult to implement

Software Defined Radio for WSN

- Potential solution for all these adaptive techniques
- Cognitive radio deals with interferences
- Still energy consuming but not so much
- Exploration of low power hardware processors for SDR based WSN

WSN Context 0000	Energy Modeling	Energy Optimization	Software Radio WSN 00000	Conclusions
Bibliographie				

R. Zhang, O. Berder, J. Gorce, O. Sentieys, Energy-Delay Tradeoff in Wireless Multihop Networks with Unreliable Links, Ad Hoc Networks 10, 7, 2012, p. 1306-1321.

M. Alam, O. Berder, D. Menard, O. Sentieys, TAD-MAC : Traffic-Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks, *IEEE Journal on Emerging and Selected Topics in Circuits and Systems* 2, 1, March 2012, p. 109-119.

T. Nguyen, O. Berder, O. Sentieys, Energy-Efficient Cooperative Techniques for Infrastructure-to-Vehicle Communications, *IEEE Transactions on Intelligent Transportation Systems*, 12, 3, Sept. 2011, p. 659-668.

M. M. Alam, O. Berder, D. Menard, T. Anger, O. Sentieys, A hybrid model for accurate energy analysis of WSN nodes, *EURASIP Journal on Embedded Systems*, Jan. 2011, p. 4 :1-4 :16.26

R. Zhang, J. Gorce, O. Berder, O. Sentieys, Lower Bound of Energy-Latency Trade-off of Opportunistic Routing in Multi-hop Networks, *EURASIP Journal on Wireless Communications and Networking*, 2011.

V. Bhatnagar, G.S. Ouedraogo, M. Gautier, A. Carer and O. Sentieys, An FPGA Software Defined Radio Platform with a High-Level Synthesis Design Flow, *IEEE Vehicular Technology Conference (VTC-Spring)*, 2013

WSN Context	Energy Modeling	Energy Optimization	Software Radio WSN	Conclusions

Thanks for listening !