

Analyse de fiabilité de MEMS RF Méthodologie et résultats

Jérémie Dhennin

Salon Microwave & RF Conférence Fiabilité des Composants et Systèmes Electroniques Hyperfréquences

01/04/15

© ELEMCA

Analyses & expertise Laboratory

Key figures

2003 : Creation of NOVA MEMS Turnover 2013 : 750k€ (<u>Customers</u> + CNES + R&D)

2015 : Rebranding \rightarrow ELEMCA

Private capital (X. Lafontan)

LAAS-CNRS Research partner

13 collaborators – 11 technical :

- 🗸 3 PhD
- ✓ 5 engineers
- ✓ 3 technicians

Infrastructures

Team

CNES : Technical operations 950m² of laboratory

TIC Valley : Administrative / Sales

May 15

Markets & references

Microtechnologie

Embedded systems

Mechanical parts

Product development pitfalls

Valley of death: between prototyping and integration / end-use

Main causes :

- » Lack of reliability data
 - » No statistical models
 - » No ageing laws
- » High development costs
 - » Low visibility on the budget required to develop a MEMS device (active structure + packaging+ electronics + tests + qualification)
 - » Difficult to reach volume production
 - » Need to reach a threshold confidence level to enable the use of new technologies

The reliability assessment process flow

-

Maturity of the product	Tests performed		Output	
Development: 10s to 100 pieces manufactured	HALT (Highly accelerated lifetest): stress the device far beyond its expected specifications to evaluate the margins. (thermal, mechanical, electrical stresses, and coupled)	Loop	Design verification / modification Process validation Optimization No lifetime quantification	
When completed, go on to the next step. But mind the gap!				
Industrialization: 10 to 10000 pieces Stabilized process	HASS (Highly accelerated Stress Screen) = reliability evaluation of devices representative of the production Temperature, humidity, mechanical tests, radiations	Loop	 Lifetime assessment in any given environment Failure rate Fine tuning of the process / design 	
Mass production: up to Billion pieces	Qualification = check the functionality of the devices after the accelerated aging conditions defined by the mission profile (customer input)		Go / no Go information	

Need some standards

- Which standards use to evaluate the reliability and qualify the MEMS devices?
 - Evaluation testing:
 - Electrical stress (Life test, HTOL...)
 - Mechanical stress (shocks, vibrations...)
 - Environmental stress (temp. shock and cycling, seal tests...)
 - Assembly capability
 - Radiation testing
 - Other standards:
 - CEI 60068 environmental testing, CEI 60749 Semiconductor devices
 - MIL-883-STD
 - JESD22
- How to we account for the specificities of MEMS devices?
 - Multi-physic system
 - Specific failure mechanisms
 - Acceleration factors unknown

MEMS peculiarities

Electronic products	MEMS devices		
Processes well established, yield	Processed still been tuned		
Gap between the designers and the process teams	The designers must know about the process (impact on the material prop., interactions between structures)		
The package aims at separating the operating part from the exterior (except electrical connections)	The package needs to allow the sensing / actuation of the mobile parts and to transmit the signals (elec, optical, chemical)		
Reliability issues are well-known	Reliability issues are numerous (product dependant) and involve many physical domains		
Accelerated aging (quite) easy to setup	May be difficult to run multiple tests in parallel (MOEMS): expensive custom setup		

- Standard for testing: ISO 62047-5
 - Definitions (actuation voltage, RF parameters, resonant frequency, etc.)
 - Methodology to measure the actuation voltage, the impedance, S Parameters

- Reliability: « to characterize the lifetime of a RF-MEMS switch, it has to be actuated in a repetitive way until failure » (approx. translation from french...)
 - Cold switching
 - Hot switching
 - Other environmental tests (TCy, HBT, shocks, vib)
- Typical failure mechanisms: dielectric charging, self-actuation, material transfer and dielectric formation on the ohmic contacts)

Methodology

Preliminary study

- Bibliographic survey
- ✓ Synthesis of field experience
- Technological analyses on functional devices
- Mission profiles

Identification of (most probable) failure mechanisms Definition of test plan (with critical stresses to accelerate failure mechanisms)

"Custom" Reliability test plan

Realization of stress tests (one batch = one test), with in-situ integrity monitoring

Failed devices (failures due to stress tests)

Reliability evaluation synthesis

- Failure analysis
- ✓ FMEA building
- Lifetime & failure ratio in testing environments

Failure mechanisms ranking and associated, accelerating stresses

Qualification plan definition

Selection of safe operating area, according to device limits

"Product" dedicated qualification plan

• Proposed test plan

Failure mechanisms

Dielectric charging assessment

- KPFM
- Cycling tests under different polarization conditions

Contact degradation

- Micro bending tests
- Cycling tests / Power handling ability

Packaging

- Sealing material inspection (SEM-EDX, EBSD)

Creep / material fatigue

- Vpi / Vpo shift under permanent / cyclic actuation
- Crack propagation tests
- EBSD

PoF / Acceleration factors

Environmental lifetest MEMO project: CNES – TAS – LETI – XLIM

• 24 channels

Accelerated aging: good results

* David Mardivirin, Pierre Chauveau, Arnaud Pothier, Aurelian Crunteanu, Pierre Blondy, Reliability of Dielectric Less RF-MEMS Capacitive Switches, *Proceedings of CCT MCE MEMS reliability workshop, 2008*

** Enrico Autizi, Reliability and Failure Analysis of RF-MEMS switches for space applications, PhD Thesis, University of Padova, 2011

Contact resistance evolution (from UoPadova)**

© ELEMCA

Accelerated aging: MEMO project: CNES – TAS – LETI – XLIM

Cycling test at 1Hz

Contact resistance degradation

Mechanical relaxation?

Experimental charging characterization: Kelvin Probe Force Microscopy techniques

Surface potential decay with time measured in air (left) and in nitrogen (right) under selected relative humidity levels for charges injected using different pulse amplitudes, Up.

- Multi-physical system
 - o Mechanical effects
 - o Electrical
 - o Thermal
 - o Chemical
- Ohm's law is not applicable anymore

 The load applied by the actuator may vary with time (charging effect, creep)

Description of the experimental set-up

elemca tests analyses expertise

Specific contact investigation:

Source Modes	Switching Modes		
•Current source or voltage source	Hot switching Cold switching Mechanical switching		
Input Parameters	Range		
•Current level (Ic)	10 ⁻⁵ to 1A		
•Maximum load applied (L _{max})	1μN to 6mN		
 Contact voltage(Uc) 	10 ⁻⁵ to 40V		
•Holding plateau at load max t _{hold}	0 to several min		
Environment	Dry nitrogen (< 5% RH)		
Outputs			
•Voltage Drop (Vc) or current drop (Ic) [depending on the source mode]	•Contact stiffness (K)		
•Tip Displacement (d)	•Contact resistance (Rc)		

*Contact force resolution = 1µN displacement resolution = 1nm

*test structures are reported and micro bonded on a PCB (Printed Circuit Board).

Contact resistance versus contact force as a function of the current flowing through the contact for Au/Ru, Au/Au, Ru/Ru, Rh/Rh and Au/Ni contacts at 1mA and 100mA ($V_{compliance} = 1V$)

- **Au/Au contact** shows the more stable and the lowest contact resistance beyond contact force about 40μ N from 1mA ($R_c = 0.49\Omega$) to 100mA ($R_c = 0.45\Omega$)
- » Rh/Rh contact reaches a lower contact resistance at 140µN compared to the Ru/Ru contact at 1mA. This result could be attributed to the low resistivity of the rhodium compared to the ruthenium.
- **Au/Ru bimetallic contact** is relatively stable at the maximum contact load. From 1mA to 100mA, the contact resistance at 145 μ N decreases from 1.9 Ω to 1.4 Ω .

- MEMS components are now bridging the gap between development and successful integration in high-rel applications
- Need for standards, tuned for each family of MEMS
- Coupled approach environmental testing + failure mechanism identification and modelization (for acceleration factors determination)

