>> Designing complex Frontend Modules for Ka-Band and WiGig communication using XPU-Technology

Contact:

W. Simon

E-Mail:simon@imst.com

Outline

Empire

- Introduction
- > XPU Technology
 - Overview
 - Algorithmic enhancements for FDTD
 - Benchmark results
- Application examples
 - 30 GHz KA Band Frontend
 - WiGig Frontend
 - Automotive Radar antennas
- Conclusion

Advanced Numerical Modeling

Today's Design Challenges:

- Design Complexity
- Tight Coupling with other electronics
- Effects of advanced packages
- Varying dimensions/aspect ratios
- User interaction/ environment

 Accurate and powerful tools for numerical EM modeling needed

XPU FDTD technology

Full 3D FDTD modeling
 Memory and CPU time efficient

XPU Technology

IMST invented software acceleration technique for FDTD simulation on modern CPU's

- Specific assembler code created for each simulation to fit CPU architecture and simulation model
- Individual code adaptation for latest CPU's (AVX, AVX2,...)
- Speed not limited by RAM access time due to efficient last level cache usage (multiple time step principle)
- ✓ Ability to access the complete RAM of PC (> 512 GB today)
- ✓ High simulation speed for all simulation model sizes
- ✓ Multiple PC's using the XPU technique can be efficiently clustered
- Efficient simulation option by swapping on hard disk (simulation size of more then 1 TB possible)

XPU Technology

Evaluation of algorithmic components and resulting performance

	Multi Thread	Multi Time Stepping	E&H	AVX	Speed Mcells/s	Optimized
1 core-	X	X	X	X	108	← FDTD
	X	X	X	\checkmark	183	code
	Х	Х	\checkmark	\checkmark	295	
	Х	\checkmark	\checkmark	\checkmark	468	EMPIRE
16 cores	\checkmark	\checkmark	\checkmark	\checkmark	5600	← XPU

2 x Intel Xeon E5-2687 W, 3.1 GHz, 16 cores

XPU Technology vs. GPU

XPU technology surpasses simulation speed of GPU cards for FDTD simulations

Cost- & Energy- efficient computing

17-4770 PC	~	700	€
17-5960x PC	~	1800	€
Dual Xeon workstation	~	7000	€
Workstation + GPU	~	9000	€

Complete Mobile Phone: PA analysis

Output matching GSM:simulation vs. measurement

KA-Band / 5G DBF frontend module

Flexible modular concept

KA-Band / 5G DFB TX frontend module

I M S

LTCC frontend: Main functional layers

M ST

LTCC frontend: RF circuitry architecture

LTCC frontend: RF chipset

M

30 GHz KA Band frontend

30 GHz KA Band frontend

RF Frontend incl. 8x8 array antenna

- > simulation on dual Xeon E5-2697
 > 600 Million cells (1664x1650x225)
 > grid: 10 µm < ∆ < 215 µm
- 56000 objects
- memory usage: Field 16 GB
- simulation Speed: ~ 5800 Mcells/s
- simulation Time: < 2h *</p>

© IMST GmbH - All rights reserved

* simulation on Dual Xeon E5-2697 workstation

60 GHz WiGiG Frontend Module

SiGe chip design

- Size: 80 mm x 170 mm
- > 60 GHz Substrate Integrated Waveguide Array Antenna in LTCC
- Operating frequency: 57-63 GHz (10 %)
- > Max. scanning range: \pm 30° in one plane
- Total array gain: 18-20 dBi

Antenna Element Realization Technique

60 GHz WiGig Frontend Module

size: 80 mm x 170 mm
mesh: 35 Million cells
resolution 25 µm < d < 250 µm
memory usage: 1.5 GB
simulation speed: 5200 Mcells/s
simulation time: 1 min*

© IMST GmbH - All rights reserved

* simulation on Dual Xeon E5-2697 workstation

60 GHz WiGiG Frontend Module

M

Reflection Coefficient

24 GHz radar antenna (TX)

© IMST GmbH - All rights reserved

* simulation on Dual Xeon E5-2697 workstation incl. metal & dielectric loss

24 GHz radar antenna (TX)

- Excellent agreement between measurement and simulation
- Gain, SLL and elevation as required

24 GHz radar antenna (RX)

- Eight sub arrays with 3 rows each used for RX azimuth beamforming
- Dual use of antenna rows with innovative backside feed network

20 GHz – 28 GHz
216 Million cells, ~ 6.8 GB
Simulation time: ~ 25 min

Port Auto

Exyz Gain Abs

4.100 GHz

13.58 dBi 10.58 dBi +7.58 dBi +4.58 dBi +1.58 dBi

-10.42 dBi -13.42 dBi -16.42 dBi

42 dBi 42 dBi

24 GHz radar antenna (RX)

- Gain RX azimuth antenna 1-8
 - Excellent agreement between measurement and simulation
 - Excellent element match
 - Wide azimuth diagram for DBF
 - Good uniform linear array

24 GHz radar TX/RX module

- Manufacturing on Rogers 4350
- 1st shot successful

24 GHz Automotive TX/RX radar antenna

Antenna with near field at 24 GHz

Backside feed network with housing

- size: 80 mm x 170 mm
- dielectric thickness ~ 1mm, 4 metal layers
- O201 SMD resistors for Wilkinson dividers and antenna rows end load
- 7 x 24 patches for TX & RX
- mesh 1112 x 1300 x 55 cells (108 Million cells)
- > resolution 25 μ m < d < 500 μ m
- memory usage 3.14 GB
- simulation time 7 min (Dual Xeon workstation) ; speed 5850 Mcells/s

24 GHz Automotive TX/RX radar antenna

Return loss

Nearfield – comparison simulation/measurement

simulation

measurement

good agreement between measurement and simulation

M ST

77 GHz radar antenna

➢ frequency: DC - 77 GHz

- > all parts metal except windscreen, bumper and tire (dielectric)
- results: s11, 2D & 3D farfield, nearfield in cutplanes
- size: 400 Million FDTD cells, 10 GB memory
- simulation speed: 6200 Million cells/s Simulation time: 20 min*

Conclusion

- Innovative FDTD coding utilizing XPU technology enables fast parallel computation on multicore and multi CPU workstations in a memory efficient way
- The XPU technique can utilize the full memory of the PC to simulate large & complex EM-models
- Empire shows accurate simulation results within very short simulation time for complex frontend designs
- The high accuracy of the simulation results enables shorter prototype cycles and hence development costs are reduced

