« Le GaN dans les systèmes militaires »

« GaN in military systems »

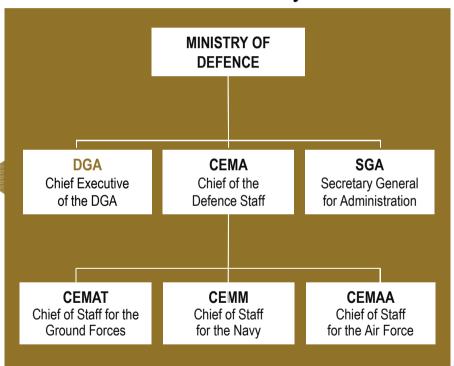
Francis Doukhan <u>francis.doukhan@intradef.gouv.fr</u>
François Reptin <u>francois.reptin@intradef.gouv.fr</u>

Summary

- DGA presentation
- History
- GaN Advantages
- GaN necessary improvements
- GaN Circuits
- Substrates and Epitaxy
- European industrial base
- Military applications & Market
- Conclusion

DGA: OUR MISSIONS

WWW.IXARM.COM


DEFENCE PROCUREMENT AGENCY

Equipping the Armed Forces

Preparing the future of Defence systems

Promoting Defence equipment exports

At the core of the Ministry of Defence

Components activities at DGA

- Part of Technical Directorate
- All Electronic and opto-electronics components
- 40 persons in Bagneux (South of Paris) and Bruz (near Rennes)
- 13 persons working on microwave components and systems
- Expertise, technology analysis and RF characterisation

GaN History at DGA

- Late 1990's GaN break-through is detected by DGA
- 2001 : First DGA contract to research labs launched
- 2003 : First military European conference (MoD's, Industry and research Labs) in Stockholm
 - MoDs convinced that they need to support the development of GaN microwave technology to make it available in Europe, without access restriction
- 2005 : Biggest EDA project (Korrigan) on components funded by 7 European MoD's is started
- 2006 : UMS started industrialisation

2011 : UMS GH50 technology qualified

GaN advantages versus GaAs

- Firstly: transistors power density
 - Higher power T/R for radars
 - Higher power for jamming
 - Smaller circuits: lowering of the €/W cost
- Wide band capability for Electronic Warfare
- Robustness
 - LNA without limiter in radar antennas
 - Radiations
- Higher operating Tj

GaN necessary improvements

- HPA X band MMIC current capability
 - GaAs ~20mm² 10W PAE 40%
 - GaN ~20mm² >20W PAE 50%
- Without PAE improvement, the potential of this technology can't be exploited due to thermal constraints
- PAE and packaging with high thermal dissipation capability are still to be improved
- TJ 225°C qualification

GaN Circuits – next step

- T/R module with GaN / w/o GaAs
 - Robust LNA
 - NF ~ GaAs LNA
 - High linearity
 - >40dBm without damage
 - Recovery time !!!
 - Driver
- Other circuits
 - Power switches
 - Mixer (Higher compression point)
 - ...

Substrates and Epitaxy (1/2)

- SiC substrates
 - Cristal compatibility with GaN
 - Good thermal propriety
 - But expensive compared to Si
 - Up to now one source (US) is delivering the majority of the 4 inches quality substrates
 - → MoDs support to have an European alternative : EDA MANGA project

Si substrates

- Not chosen in a first step :
 - Lower epitaxy quality
 - Thermal constraints for L to Ku band power devices
- Solution for lower power devices at higher frequencies assuming the lossy lines issue is solved.

Substrates and Epitaxy (2/2)

- Epitaxy
 - A European substrates provider won't be sufficient without a European Epitaxy provider to guarantee the availability of the GaN technology material for military application
 - After Korrigan the main technical approach exhibiting good result was MOCVD
 - European MoDs have the objective to make this European source emerging

European Industrial Base

- Substrates
 - Norstel (Sw), SiCrystal (Ge)
- Epitaxy
 - IQE (UK), EpiGaN (B), Classic (Sw)
- GaN process
 - Ommic (Fr), Selex SI (It), UMS (Fr/Ge)

GaN Military Applications

- The main applications are those which need high power in a small volume
 - Active antennas radar
 - Jamming
 - Seeker
 - Telecom
 - Military Frequency band : VHF, UHF, L to Ka

SATCOM

- A growing need waiting for European technology
- Common Space and military need
- Ka band

GaN Military Market

- Deployment of GaN in progress for all the military applications in all the frequency bands
- Nevertheless European military market will not be large enough to feed the GaN suppliers
- ESA in phase with MoDs on the need
 - Regular meetings and workshops with ESA allow the alignment of both ESA and MoDs strategy
- Still waiting for the volume Telecom market

Conclusion

- Strong effort from MoDs to develop GaN technology in Europe
 - Technology now available
 - Material availability to be achieved
- Thermal constraints still to be mitigated (PAE, Tj, packaging)
- Ka-band technology is the next step
- After HPA, need for LNA, Mixer....

